Method of determination of magnetic susceptibility in chemistry

Method	Principle	Sample State	Common Information
Gouy Balance	Measures the force on a sample in an inhomogeneous magnetic field.	Solid or Liquid	Qualitative/Quantitative: Molar susceptibility (χ_m)
Evans Method (NMR)	Measures the shift in an NMR signal due to the sample's magnetic susceptibility.	Solution	Quantitative: Molar susceptibility (χ_m) and magnetic moment $(\mu_e ff)$
Faraday Balance	Similar to Gouy, but measures force on a very small sample.	Solid	Quantitative: Highly accurate χ_m and its temperature dependence.
SQUID Magnetometry	Measures the magnetic moment via quantum interference in a superconducting loop.	Solid, Liquid, Film	Quantitative: Most sensitive method; full χ vs. T, M vs. H data.

1. The Gouy Balance (Classical Method)

This is one of the oldest and most demonstrative methods, excellent for teaching the principles of magnetism.

- Principle: A sample, suspended from a balance, is placed in a magnetic field that is strong at one end and weak at the other (an inhomogeneous field).
 The force (F) on the sample is measured.
 - \circ A **paramagnetic** sample ($\chi > 0$) is **pulled into** the strong field region, increasing the measured weight.
 - \circ A **diamagnetic** sample (χ < 0) is **pushed out of** the strong field region, decreasing the measured weight.

Procedure:

- 1. The sample is packed into a cylindrical Gouy tube.
- 2. The tube is suspended from an analytical balance, with the bottom of the tube positioned between the poles of a strong magnet.
- 3. The weight of the sample is measured with the magnet **off** (\mathbf{W}_0) and then **on** (\mathbf{W}).
- 4. The force is the difference: $\Delta W = W W_0$.

• Calculation:

The magnetic susceptibility is related to the force by:

$$\Delta W = (1/2) (\chi - \chi_a) A \mu_0 H^2$$

Where:

- ΔW is the change in mass (converted to force).
- \circ χ is the susceptibility of the sample.
- \circ χ_a is the susceptibility of the air (or atmosphere) displaced.
- A is the cross-sectional area of the sample tube.
- \circ μ_0 is the permeability of free space.
- H is the magnetic field strength.

By calibrating with a standard substance of known susceptibility (e.g., water, $[Ni(en)_3]S_2O_3$), the field strength and tube constant can be accounted for, allowing for the calculation of the sample's χ .

- Advantages: Simple concept, relatively inexpensive, good for demonstrations.
- **Disadvantages:** Requires a large amount of sample, less accurate than modern methods, not ideal for temperature-dependent studies.

2. The Evans Method (NMR Method)

This is an extremely popular method in synthetic chemistry labs because it is rapid and uses standard equipment.

Principle: A paramagnetic substance has a different magnetic susceptibility
than the solvent. This difference creates a small, non-uniform magnetic field
inside the NMR tube, which causes a measurable shift in the NMR resonance
frequency of the solvent peaks.

• Procedure:

- 1. Prepare an NMR sample with your paramagnetic compound dissolved in a deuterated solvent (e.g., CDCl₃) with a trace of TMS (internal standard).
- 2. Using a **coaxial insert** (a very thin NMR tube), place a reference solution (the pure deuterated solvent with TMS) inside the main NMR tube.
- 3. Run a simple ¹H NMR spectrum. You will see two sets of solvent peaks: one from the inner reference solution and one from the outer solution containing your paramagnetic compound.
- 4. Measure the difference in the chemical shift (Δf in Hz) between the two solvent peaks.

Calculation:

The molar magnetic susceptibility (χ_m) can be calculated using the formula:

$$\chi_{\rm m} = (3\Delta f) / (4\pi fm) + \chi_0 + (\chi_0 - \chi_i)(d/D)$$

For most practical purposes, a simplified version is used:

$$\chi_{\rm m} = (3\Delta f) / (2\pi fm) + \chi_0$$

Where:

- o Δf is the frequency difference (in Hz).
- o f is the NMR operating frequency (in Hz, e.g., 400 MHz).
- m is the molality of the solution (mol/kg).
- \circ χ_0 is the mass susceptibility of the solvent (a known constant).

 (The d/D terms account for the geometry of the coaxial insert and are often negligible).

From χ_m , the effective magnetic moment (μ_e ff) can be calculated using the Curie law: μ_e ff = 2.828 $\sqrt{(\chi_m T)}$

- Advantages: Fast, requires very little sample, works on standard NMR spectrometers, provides data in solution state.
- Disadvantages: Less accurate for very weakly paramagnetic or diamagnetic samples; requires the compound to be soluble.

3. SQUID Magnetometry (Modern Gold Standard)

A Superconducting Quantum Interference Device (SQUID) is the most sensitive and powerful method available.

Principle: The sample is moved through a set of detection coils in a stable, high
magnetic field generated by a superconducting magnet. This movement
induces a current in the coils. The SQUID sensor, a highly sensitive quantum
device, measures this current, which is directly proportional to the magnetic
moment of the sample.

Procedure:

- 1. A small, precisely weighed sample (a few milligrams) is loaded into a capsule and attached to a sample rod.
- 2. The rod is inserted into the magnet, which is cooled by liquid helium (typically to 1.8 400 K).
- 3. The instrument is programmed to perform two primary types of measurements:

M vs. H (Magnetization vs. Field): The magnetic field (H) is varied at a constant temperature, and the magnetization (M) is measured. This produces a hysteresis loop for ferromagnets or a straight line for paramagnets.

 χ vs. T (Susceptibility vs. Temperature): The temperature is varied while applying a constant magnetic field (e.g., 0.1 T), and the susceptibility (χ = M/H) is measured. This is the most important experiment for chemists.

Data Output and Interpretation:

The instrument outputs raw data for magnetic moment (emu). This is converted to molar susceptibility (χ_m) and then to effective magnetic moment (μ_e ff).

- A plot of 1/χ vs. T is created.
- o The data is fitted to the Curie-Weiss Law: $\chi = C / (T \theta)$.
- $_{\circ}$ From the slope (1/C), the $\mu_{e}ff$ is calculated, revealing the number of unpaired electrons.
- o From the x-intercept, the **Weiss constant (θ)** is determined, revealing magnetic interactions (ferromagnetic if $\theta > 0$, antiferromagnetic if $\theta < 0$).
- **Advantages:** Extremely sensitive, works on very small samples, provides data over a wide range of temperatures and magnetic fields, the definitive method for advanced magnetochemistry (SMMs, SCMs, etc.).
- **Disadvantages:** Very expensive, not a routine benchtop instrument, requires expert operation and data analysis.